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Recent Advances and Applications in Cryogenic Propellant
Densification Technology

Thomas M. Tomsik
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Abstract

This purpose of this paper is to review several historical cryogenic test programs that were conducted at
the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these
technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2)
and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic
propellants. This is due to the fact that they have a significantly higher density (e.g. triple-point
hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling
point cryogen. This paper, which is intended to be a historical technology over-view, will trace the past
and recent development and testing of small and large-scale propellant densification production systems.
Densifier units in the current GRC fuels program, were designed and are capable of processing
subcooled LH2 and LO2 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final
objective of this technical briefing is to discuss some of the potential benefits and application which
propellant densification technology may offer the industrial cryogenics production and end-user
community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and
aerospace application have provided the opportunity to either increase performance of existing launch
vehicles or to reduce the overall size, mass and cost of a new vehicle system.

Introduction

The NASA Glenn Research Center (GRC) has led the nations’ effort in the development of production and handling
technology of densified cryogenic propellant systems for aerospace and launch vehicle application. The technology of sub-
cooling cryogenic propellants below their normal boiling point and thereby making the fluid denser is one of the key process
technologies necessary to meet the challenge of single-stage-to-orbit (SSTO) and reusable launch vehicles (RLV). Densified
propellants are critical to lowering payload to orbit costs because they enable more cryogenic propellant to be packed into a
given unit volume, thereby improving the performance of a launch vehicle by reducing its overall size and weight. Density
improvements of 8% for LH2 and 10% for LO2 are expected to reduce the gross lift-off weight of a launch vehicle system by
up to 20 percent.

Glenn research engineers are currently working on providing methods and critical test data for the continuous large-scale
production of densified liquid hydrogen and densified liquid oxygen. Five years ago, the prototype equipment and process
technology for continuously subcooling LH2 propellant below the normal boiling point was initiated at GRC. Recent analysis
and test results have led the aerospace community to accept the notion that high-density propellants are an enabling
technology for a viable RLV system. Going further back in time, the batch production and testing of slush hydrogen (SLH2),
a 50 wt% mixture of liquid and solid hydrogen, was performed at the GRC during the early 1990’s to support the National
Aerospace Plane (NASP) program. Large 800 gallon batch quantities of 50 wt% SLH2 were produced using a freeze-thaw
evaporative cooling technique. The very early history of cryogenics research at the GRC ultimately began with the space race
initiative. The push to develop manned space technologies started in the 1950’s when LH2 was the rocket propellant of
choice to fuel the upper stage of several classes of launch vehicles.
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This paper will qualitatively and briefly describe several past and recent programs initiated at the Glenn Research Center
involving cryogenic fuels and propellant densification. Densified propellant research and testing conducted and sponsored by
the National Aeronautics and Space Administration (NASA) to date has principally involved cryogenic fluids most
commonly used in the aerospace community. These include liquid nitrogen, oxygen, hydrogen and liquid helium. A basic
technological overview of the NASP slush hydrogen program including production equipment and test results will be
presented. A descriptive summary of the cryogenic processing hardware used in each propellant densification system
approach, along with a summary of test results are reported. Finally, thoughts on other practical approaches to densifying
propellants and potential commercially viable methods for the production and end-use application of densified-subcooled
cryogenic fluids will be described. Densifier refrigeration concepts extending over the temperature range from normal boiling
point liquid methane (201 ºR) down to liquid helium (3.9 ºR λ) are of more interest to chemical engineers working in the
cryogenics industry and thus from an applications viewpoint will be briefly reflected upon.

Cryogenic Research at LeRC from 1945 to 19881

The history of cryogenic research at the NASA Lewis Research Center (LeRC), which was recently renamed in 1999 to the
“NASA Glenn Research Center at Lewis Field,” began in the mid-1940’s. At that time when the agency was referred to as
the National Advisory Committee for Aeronautics (NACA), researchers at the Lewis Laboratory were studying alternate
potential rocket fuels. The rocket research group, established at Lewis in 1945, knew then that a liquid hydrogen/liquid
oxygen powered vehicle could provide a 40% increase in payload capability over other propellant combinations.

In the early 1950s’, a Lewis team began to develop pioneering techniques in the handling of liquid hydrogen2 and liquid
oxygen and had operated small chemical rocket engines with LH2 as a fuel. By 1954, the rocket research group at the Lewis
Laboratory had developed the nations’ first regeneratively cooled liquid hydrogen-liquid fluorine rocket with 5000 pounds of
thrust. Then for the first time in aviation history, a test with a single LH2 fueled modified Curtis Wright J-65 jet engine on a
B-57B bomber was conducted in 1955. The test nicknamed “Project Bee”, had not only led to a successful flight
demonstration over nearby Lake Erie but established early procedures for the storage, handling and transfer of liquid
hydrogen propellant.

The completion of the Rocket Engine Test Facility (RETF) in 1957 provided the Lewis Laboratory with a significant LH2-
LO2 hot-fire experimental capability. This facility provided test conditions up to 20,000 pounds of thrust at either sea-level or
vacuum exhaust. Much of the Pratt & Whitney’s RL10 expander cycle LH2-LO2 rocket engine development tests were
conducted at the RETF. With the start of the Saturn program, the decision to fuel the upper stage of the Saturn V with liquid
hydrogen versus kerosene fuel was controversial within the NACA agency. In December of 1959, Dr. Abe Silverstein, a
senior NASA engineer had convinced the Von-Braun supporters of conventional fuels that the upper stage should use liquid
hydrogen to power men to the moon.

In the 1960s, under the leadership of LeRC Center Director Dr. Abe Silverstein, the basic research into LH2 technology was
truly a milestone in modern cryogenics history. He led the investigation and development of liquid hydrogen as the principal
fuel for the Centaur upper stage. In 1962, LeRC was named the lead center for the Centaur program. Classical experimental
heat transfer studies4-5 with liquid hydrogen were carried out by a LeRC group working in the Cryogenic Heat Transfer
Section. Between 1961 and 1966, their testing had proven the feasibility of using LH2 as an engine coolant.

As a pre-validation test of the Apollo program Saturn V application, the LH2/LO2 powered Centuar upper stage would ride
on top of an Atlas rocket. This mission sent a space probe named Surveyor to land and photograph the moons lunar surface in
May 1966.  The highlight of the Apollo era occurred in 1969 when Apollo 11 astronauts first set foot onto the surface of the
moon.  As the race to the moon and the Apollo program3 ended, between 1970 and the mid-1980s, much of the cryogenic
research and testing at LeRC focused on cryogenic storage, supply and transfer in support of deep-space exploration
programs. Research and testing involved LH2 tank thermodynamic studies, tank pressurization testing, no-vent cryogenic fill,
tank thermal control with Multi-Layer Insulation (MLI) materials and in-space propellant technology management work.
Meanwhile, the development of the LH2-LO2 fueled Space Shuttle, a reusable space transport plane, had other NASA
centers coming to the LeRC for fundamental cryogenic research in support of pumps, seals, injectors and combustion
chamber heat transfer technology. These and other significant events, tracing the history of cryogenic propellant research and
testing that has occurred at the LeRC between 1945 to present is summarized in Table 1.0.
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Table 1.0:  Historical events in cryogenic research and testing at LeRC from 1945 to present.

YYeeaarr CCrryyooggeenniicc  RReesseeaarrcchh  EEvveenntt  //  AAccccoommppll iisshhmmeenntt  aatt  LLeeRRCC
1945 Rocket Research Group established to study fuels and LH2
1953 Hydrogen liquifier installation completed
1954 Regeneratively cooled LH2-LF2 rocket developed (5000 lbf thrust)
1955 LH2 fueled modified J-65 jet engine flight test of B-57B bomber
1957 Rocket Engine Test Facility completed - 20,000 lbf LH2-LO2 test capability at sea-

level or vacuum exhaust condition
1958 NACA becomes new NASA organization. Lewis Laboratory renamed to the

NASA Lewis Research Center
1959 NASA selects LH2 to fuel Upper Stage of Saturn V launch vehicle
1962 LeRC named lead center for Centaur program – Pratt & Whitney RL10 H-O engine

development commences at RETF
1961 - 1966 Classical LH2 heat transfer studies prove LH2 as an engine coolant
1966 LH2/LO2 powered Atlas-Centuar upper stage sends Surveyor probe to land and

photograph moons lunar surface.
1969 Apollo 11 astronauts land on the Moon powered w/H-O upper stage
1970 - 1985 LeRC cryogenic research and testing focuses on cryogen storage, supply and

transfer to support space exploration programs
1988 - 1994 NASP Slush Hydrogen Technology Program  - large scale production, transfer and

in-tank thermodynamics testing with SLH2
1995 - 1997 LH2 densification prototype system  - 2 lbm/sec rig testing at K-Site
1996 Hot fire ignition test of RL10B-2 engine with densified LH2
1998 Demonstration of LH2 thermal stratification in a composite prototype flight weight

dual-lobe tank conducted at K-Site
1997- Present Design and test of large scale LO2-LH2 propellant densification units for

X-33/RLV flight experiment with high-density propellant

Cryogenic Research at LeRC from 1988 to Present

During the last eleven years, extensive research into the production and handling of densified propellants has been conducted
at LeRC. The benefits of densified propellants, LH2 and LO2 to reduced launch vehicle size and increased payload to orbit
were well demonstrated during the 1980’s. Several programs were initiated to bring this technology from the laboratory to
the launch site.

Properties of High Density Cryogenic Propellants6

High performance rocket propellants are fuels with special desirable characteristics. These include high energy, high density,
good heat capacity for cooling, fast mixing and rapid combustion kinetics. With the exception of the high-density property,
LH2 is the only known propellant with all of these advantageous features. When reacted with liquid oxygen, LH2 has the
highest energy release per pound of any propellant combination. The energy release of a propellant, notably referred to as
specific impulse (ISP) is ~390 seconds for the LH2-LO2 system. The ISP relates thrust F (lbf) to chamber propellant mass flow
rate Wtc (lb/sec) and is a useful measure of propellant efficiency in terms of thrust per unit Wtc.

tc
SP W

F
I =
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The principle disadvantage of liquid hydrogen however is its’ remarkably low density. The density of liquid hydrogen at its
normal boiling point is only 4.42 lbm/ft3. In contrast to the density of water at 62.4 lbm/ft3, hydrogen has the lowest density of
any known fluid. When subcooled to the triple point (TP) of 24.8 ºR, LH2 becomes 9% greater in density and provides a 12%
increase in cooling capacity compared to the Normal Boiling Point (NBP) condition of 36.4 ºR. Like all cryogenic liquids, as
you move further along the LH2 saturation curve (fig 1.0), the vapor pressure decreases as temperature decreases and the
fluid density rises. It is this type of fluid behavior that enables one to control propellant density by simply changing the vapor
pressure above the cryogenic liquid.

Figure 1.0—Liquid hydrogen density and vapor pressure curves.

Certain physical properties in Table 2.0 demonstrate the effect of subcooling on density for cryogenic methane, para-
hydrogen and oxygen at TP and for slush mixtures. A fifty weight percent mixture of SLH2 is 15% denser, and has 18%
greater cooling capacity than NBP LH2. Similar density increases are achievable with subcooled liquid methane and triple-
point or slush oxygen.

Table 2.0:  Density effect and fluid properties for methane, hydrogen and oxygen.
Property methane p-hydrogen oxygen
Molecular Weight (lbm/lb-mol) 16.042 2.016 32.000
Normal Boiling Point (ºR) 201.0 36.4 162.4
Density @ NBP (lbm/ft 3) 26.37 4.42 70.8
Triple Point Temperature (ºR) 163.3 24.8 97.8
Triple Point Pressure (psia) 1.70 1.022 0.022
Triple Point Liquid Density (lb m/ft 3) 28.20 4.81 81.6
Solid Density (lbm/ft3) 31.90 5.40 84.9
Heat of Fusion (Btu/lbm) 26.10 25.05 5.967
Heat of Vaporization (Btu/lbm) 219.6 191.7 91.63
Slush Density @ 50% solid (lbm/ft 3) 30.05 5.10 83.25
% Density Increase, NBP-to-Slush 14.0 15.4 17.6

Slush Hydrogen Experimentation7–9

In 1988, an extensive program was started at the LeRC, Plum Brook Station, in Sandusky, Ohio to develop large scale slush
hydrogen production capabilities in support of the National Aerospace Plane Program (NASP). By 1990, the first slush
hydrogen test series began at a modified K-Site Propellant Tank Research Facility. The slush hydrogen production system
designed by Air Products included a 1300 gallon SLH2 generator, a mixer, a 10000 scfm vacuum pumping system and
extensive instrumentation. An aerial photograph of the K-Site test facility and SLH2 generator equipment tower is shown in
figs. 2.0 and 3.0, respectively.
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               Figure 2.0—NASA Plum Brook K-Site facility.
Figure 3.0—K-Site SLH2 production equipment.

Production, fluid transfer and in-tank thermodynamics testing with SLH2 continued through 1994. Over 200,000 gallons of
50 – 60 weight percent solids SLH2 were produced in 800 gallon batch quantities using a freeze-thaw vacuum pumping
process. A typical production batch cycle time with this system was two to three hours.  The SLH2 data base created by GRC
researchers included production, storage, pressurized and pumped transfer, tank pressure control, propellant mixing,
condensation of recirculated gH2, thermodynamic response to sloshing, and SLH2 densiometer development. Results of
SLH2 flow experiments10 showed that pressure drop (∆P) for two-phase slush followed the traditional fluid flow model given
by a relation derived from the Darcy-Weisbach equation

where A is the flow area (ft2); D is pipe diameter (ft); f is friction factor; gc is 32.2 ft/sec2; L is flow length (ft); m is mass flow
rate (lb/sec); ∆P is pressure drop (psi); and ρ is fluid density (lb/ft3).

Densification Technology Description

Propellant densification refers to processing techniques designed to increase the fluids’ mass per unit volume (ρf). The GRC
concept of the propellant conditioning unit shown in fig. 4.0 is based on a thermodynamic vent approach. The system consists
of a cryogenic heat exchanger, a compressor and a recirculating pump. Depending on the application, a single tank can be
used to densify the fluid by recirculation in a closed-loop through the refrigeration unit. A two tank densifier configuration
would involve flow of NBP from a supply dewar through the refrigeration unit then to a densified product receiver dewar.

In this case, propellant densification is achieved by flowing normal boiling point liquid through a heat exchanger. To
generate the subcooled densified propellant, the heat exchanger bath is filled with a coolant. For densifying LH2 to an outlet
temperature of 27 oR, the cold side of the heat exchanger is a bath of liquid hydrogen saturated at a sub-atmospheric pressure
of 1.1 psia. This produces a “heat sink” of 25.4 oR. Densification of LO2 to a temperature of 120 oR employs a bath of
saturated liquid nitrogen at 2.5 psia and 117 oR. Thus, by using a bank of compressors to decrease the pressure below
atmospheric, the liquid bath is forced to boil down to a lower temperature creating a heat sink relative to the propellant
flowing through the “warm side” of the heat exchanger. The compressor is designed to reject the low-pressure boil-off gas to
an atmospheric pressure vent system. In some cases, the refrigeration enthalpy capacity of the vented gas may be used either
to cool some secondary stream or the gas itself can be recovered for reuse as a purge, a fuel, etc.

Lf

PgAD
m c ∆= ρ2288
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Figure 4.0—Schematic diagram of propellant densification (refrigeration) unit.

Densified Propellant Testing

In 1995, with the reusable launch vehicle (RLV) program emerging, production technology work once again began at GRC11.
The effort was driven by the significant vehicle mass reduction offered to RLV with subcooled LO2-LH2. By December of
1996, a 2.0 lbm/sec LH2 prototype densification system (fig. 5.0) was successfully tested at K-Site. The unit first underwent
check-out trials by densifying LN2 to 120 oR. Following this was  a series of performance tests12 that proved the hardware
and design concept as LH2 was subcooled down to 30 oR. One year later, under a cooperative agreement with Lockheed
Martin Michoud Space Systems, a repeat test series was completed with the LH2 prototype densifier to further expand the
performance data-base. In parallel with that effort, GRC engineers had the opportunity to conduct a hot-fire ignition test13

using near-triple point LH2 with a Pratt & Whitney RL10B-2 engine. This short duration test, performed at NASA Plum
Brook Station in 1996, successfully demonstrated that the engine, shown in fig. 6.0, could be ignited outside of its’ original
“ignition design window” using subcooled LH2.

Figure 5.0—Skid mounted 2 lb/sec LH2 propellant
densification assembly. Figure 6.0—RL10B-2 rocket engine mounted in

the B-2 facility for densified LH2 ignition test.
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Figure 7.0—Assembly of the X-33 sized liquid oxygen propellant
densification unit designed and fabricated by the NASA

Glenn Research Center.

The current densification program14-15 that started at the GRC in 1997, involves the development and test of two large scale
LO2 and LH2 propellant densification production units. These systems were designed to support a future X-33 flight
experiment with high-density propellants on-board. Each densifier is configured with a high-efficiency, sub-atmospheric
boiling bath heat exchanger to cool the working fluid. A near triple-point LH2 boiling bath is used to condition and subcool
hydrogen product down to 27 oR, and a nitrogen boiling bath at 117 oR provides the heat sink to cool liquid oxygen to 120 oR.
Multistage high-speed centrifugal compressors operating at cryogenic inlet conditions maintain each heat exchanger bath and
vapor pressure below one atmosphere. The LO2 propellant densification unit shown in fig. 7.0 has a processing capacity of
30 lbm/sec (190 gpm). The LH2 unit is designed to produce 8 lbm/sec (820 gpm) of high-density LH2. Both of these large
cryogenic densification systems are enhanced 4:1 scaled-up versions of the 2 lbm/sec LH2 densifier that was previously
operated in 1996.

After all fabrication and check-out work is completed sometime in the spring of 2000, each densification unit will be
integrated with the South-Forty test area located at the GRC. This is where LO2 and LH2 densifier performance tests will be
performed with another large propellant tank designated the Structural Test Article (STA). The STA liquid oxygen tank is a
full-scale, flight-weight, prototype aluminum tank designed for X-33. The STA has a capacity of 20,000 gallons of LO2. This
years’ planned loading and recirculation testing with the STA will provide the data necessary for full-scale implementation of
propellant densification technology for the flight experiment, RLV or potential Space Shuttle Upgrades.

Densification Technology in Commercial Application

Production and use of densified propellants have several potential non-aerospace applications. These applications extend
from laboratory research to low temperature industrial gas processing.

• Subcooling cryogenic fluids below their normal boiling point (NBP) can provide researchers in low-temperature physics
with “intermediate constant-temperature-bath” cold sinks. Temperatures in-between the NBP and TP of cryogenic fluids
typically used in laboratories is shown in fig. 8.0. By controlling the heat exchanger pressure, the Thermodynamic Vent
System (TVS) concept can be applied to variable temperature refrigeration. Temperatures differentials of these particular
cryogenic fluids span from liquid methane at 37.7 ºR, LO2 at 64.6 ºR, LN2 at 25.5 ºR,  LH2 at 11.6 ºR, all the way down to a
liquid helium ∆T of 3.7 ºR.

• The development of the GRC densification system cryogenic compressor hardware has alternate technology uses of its
own. In a gas compression cycle, the power requirement of the compressor is directly proportional to inlet gas temperature.
For the same mass flow and compression ratio, the power needed to compress saturated gN2 vapor at 140 ºR is
approximately four times less than the power required at ambient inlet temperature conditions. This energy savings potential
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could be extended to typical compressed air plants and distribution systems. The application may find use in a manufacturing
facility which utilizes both LN2 and also requires a source of relatively low temperature refrigeration.

• Densification technology may even be applied to liquid air separation plants. The same type of densification system could
be used to increase the fluid density of the product cryogenic liquids. Other subtle benefits include: (a) reduced boil-off loss
of cryogens in storage resulting from the lower vapor pressure, and  (b) increased delivery loads of cryogenic fluids to a
customers site given a fixed capacity tanker-trailer to transport the liquids. Another benefit resulting from the higher density
fluid can lead to reduced product storage cost of CH4, LN2 and LO2 dewars. Figure 9.0 compares cost estimates of
commercial storage dewars for NBP LN2 from 6 kgal to 50 kgal sizes. The three curves shown below the NBP LN2 line
represents the same storage capacity based on equal mass of triple-point fluid as well as the lower associated capital cost for
the smaller volume dewar.

Figure 8.0—Cryogenic fluid temperature differential between normal boiling point and triple point.

Figure 9.0—Cryogenic fluid storage dewar costs for NBP LN2 in comparison to densified triple-point LN2, CH4 and LO2.
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Concluding Remarks

The NASA GRC has a traditionally unique history in the field of cryogenics research and testing. Over the past ten years,
subcritical cryogenic propellants research at the GRC has focused on developing production techniques, demonstrating
handling capabilities, and defining performance characteristics of high-density cryogenic propellants. Recent emphasis has
been placed on the development of predictive analytical models16 that describe the thermodynamic state and fluid dynamic
environment for the propulsion system during loading and take-off. Experimental programs have been designed with
propellant quantities scalable for full-size propulsion systems. Research areas have included densified liquid hydrogen and
oxygen, slush hydrogen, metallized gelled Earth storables (NTO, MMH, RP-1), gelled liquid hydrogen17-18, atomic
hydrogen19 and high-energy density propellants. Interest continues to grow in the aerospace community with the use of high-
density propellants. Just recently, Aerojet20 ran NK-33 engine tests with LO2 subcooled to 145 oR and RP-1 hydrocarbon
rocket fuel cooled down to -37 oF. These propellants were processed by densification hardware similar to the GRC units.
Additionally, with the advancement of “high-temperature” superconductors approaching LN2 temperature, the commercial
use of densified cryogens is more than likely to expand for cooling of conductors.
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